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Abstract
An algebraic approach to class of separable non-central Hamiltonians is
presented. We show that the bound states of quantum systems under
consideration are described by unitary representations of the so(5) algebra.

PACS numbers: 03.65.Fd, 02.20.Sv

1. Introduction

Various types of relation between the Hamiltonian of a quantum system and operators of the
enveloping algebra of a Lie algebra have been extensively investigated [1, 2] since the seminal
work of Pauli [3]. Among the relations of interest is one that [4] associates the Hamiltonian
H of a system with Casimir operators C of the Lie algebra g restricted to some subspace H of
carrier space, i.e.

H = f (C)|H. (1.1)

In this case the algebra g describes fixed energy states of a family of quantum systems with
different potential strength. That is why the present algebra g is called the ‘potential algebra’
[5].

Using the potential algebra, a number of quantum mechanical problems have been solved
algebraically (see, e.g., [6–10] and references therein). Most of these potentials are either one
dimensional or are central potentials. Hence, it is quite reasonable to ask whether one can also
solve some non-central potential problems. The answer to the question is in the affirmative.
We show that bound-state problems for the non-central potentials of the type

V (1)(x) = −γ

r
− a2

0ε0
n2 − 1

4

r2 cos2 θ
(1.2)

and

V (2)(x) = −γ

r
− a2

0ε0
n2 − 1

4

r2 sin2 θ sin2 ϕ
, (1.3)
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where r, θ , ϕ are spherical coordinates, and a0 and ε0 stand for the Bohr radius and the
ground-state energy of the hydrogen atom, respectively, admit the Lie algebra so(5) as the
potential algebra. Namely,

H(i) = − γ 2

2(C + 9/4)

∣∣∣∣
H(i)

, i = 1, 2, (1.4)

where C is the second-order Casimir operator of so(5), while H(1) and H(2) are subspaces
occurring in the subalgebra reductions so(5) ⊃ so(4) ⊃ so(2) × so(2) and so(5) ⊃ so(4) ⊃
so(3) ⊃ so(2), respectively.

2. Main idea

Let us start the discussion with the fact that (see, e.g., [11] and references therein) the symmetric
(or, class 1) unitary irreducible representation (UIR) of so(5) can be realized in the Hilbert
space H spanned by bound-state eigenfunctions corresponding to a fixed eigenvalue of the
Coulomb Hamiltonian h in four dimensions, where

h = p2

2
− γ

r
, γ > 0, (2.1)

with x = (x1, x2, x3, x4), p = (p1, p2, p3, p4) and

r2 =
4∑

i=1

x2
i , pi = −i

∂

∂xi

, i = 1, 2, 3, 4. (2.2)

(We are using units with M = h̄ = 1.) As a prelude to this realization one introduces angular
momentum and Runge–Lenz operators given by

Lij = xipj − xjpi (2.3)

Ai = 1

2
(Lijpj + pjLij ) − γ xi

r
. (2.4)

These operators satisfy the following commutation relations:

[Lij , Lkl] = i(δikLjl + δjlLik − δilLjk − δjkLil) (2.5)

[Lij , Ak] = i(δikAj − δjkAi) (2.6)

[Ai,Aj ] = −2ihLij (2.7)

[Lij , h] = [Ai, h] = 0. (2.8)

Defining now operators

Li5 = −L5i ≡
(

− 1

2h

)1/2

Ai (2.9)

which are well defined in H we obtain for Lαβ, α, β = 1, 2, . . . , 5, the commutation relations
of the Lie algebra so(5)

[Lαβ, Lγδ] = i(δαγ Lβδ + δβδLαγ − δαδLβγ − δβγ Lαδ). (2.10)

Thus the symmetric UIR of so(5) is realized in the Hilbert space H of the bound-state
wave functions 	(x) corresponding to the fixed energy subspace, with inner product

(	,	′) =
∫

R4
	∗(x)	′(x) d4x. (2.11)



Algebraic approach to non-central potentials 1185

In this realization the representation operators are given by equations (2.3) and (2.4). If we
compute the second-order Casimir operator

C = 1

2

∑
α,β

L2
αβ (2.12)

for this realization, it becomes

C = −9

4
− γ 2

2h
. (2.13)

Next, imposing the reduction conditions, one can extract the corresponding non-central
potentials from the Casimir operator.

At this stage we note that, in general, one can use for the construction of the symmetric UIR
of so(5) the carrier space with any quasi-invariant measure dµ(x) on R4. The representations
with different measures are unitarily equivalent. Although the representations with different
measure are mathematically equivalent, they may be related to different physical problems.
For this reason, we shall consider the representation with different measures.

3. The so(5) ⊃ so(4) ⊃ so(2) × so(2) reduction

We want to diagonalize so(4) and so(2) × so(2) subalgebra. Then, the reduction conditions
are

Cso(4)|lmn〉 = l(l + 2)|lmn〉 (3.1)

L12|lmn〉 = m|lmn〉 (3.2)

L34|lmn〉 = n|lmn〉, (3.3)

where

Cso(4) = 1

2

4∑
i,j=1

L2
ij . (3.4)

Since Cso(4), L12 and L34 are sought to be diagonal, we introduce in place of x1, x2, x3, x4 the
variables r, θ , ϕ, β via

x1 = r sin θ sin ϕ x2 = r sin θ cos ϕ

x3 = r cos θ sin β x4 = r cos θ cos β

with 0 � θ < π/2, 0 � ϕ, β < 2π and d4x = r3 sin θ cos θ dr dθ dϕ dβ. Then

Cso(4) = −
(

1

sin θ cos θ

∂

∂θ
sin θ cos θ

∂

∂θ
+

1

sin2 θ

∂2

∂ϕ2
+

1

cos2 θ

∂2

∂β2

)
(3.5)

L12 = i
∂

∂ϕ
, L34 = i

∂

∂β
. (3.6)

If we compute the operator γ 2/(C + 9/4) for this parametrization, it becomes

γ 2

(C + 9/4)
= 1

r3

∂

∂r
r3 ∂

∂r
+

1

r2

(
1

sin θ cos θ

∂

∂θ
sin θ cos θ

∂

∂θ

+
1

sin2 θ

∂2

∂ϕ2
+

1

cos2 θ

∂2

∂β2

)
+

2γ

r
. (3.7)
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As pointed out above, the representations constructed with different measures may be
related to different physical problems. Below we construct the representation in the Hilbert
space H′ with the measure dµ(x) = r2 sin θ dr dθ dϕ dβ. This representation, of course, is
unitarily equivalent to the representation constructed in H. The unitary mapping W which
realizes the equivalence is given by

W : 	 → 	′ = (r cos θ)1/2	. (3.8)

That is, for the representation constructed in H′ the Casimir operator, call it C ′, is obtained by

C → C ′ = (r cos θ)1/2 ◦ C ◦ (r cos θ)−1/2, (3.9)

where ◦ denotes composition of operators. Hence

γ 2

(C ′ + 9/4)
= ∂2

∂r2
+

2

r

∂

∂r
+

1

r2

(
∂2

∂θ2
+

cos θ

sin θ

∂

∂θ
+

1

sin2 θ

∂2

∂ϕ2

)
+

1

r2 cos2 θ

(
1

4
+

∂2

∂β2

)
+

2γ

r
. (3.10)

Let H(1) be a subspace spanned by |lmn〉 with fixed n. Then the operator (3.10) restricted
to H(1) becomes a differential operator in r, θ, ϕ; it is found that

γ 2

(C ′ + 9/4)

∣∣∣∣
H(1)

= ∂2

∂r2
+

2

r

∂

∂r
+

1

r2

(
∂2

∂θ2
+

cos θ

sin θ

∂

∂θ
+

1

sin2 θ

∂2

∂ϕ2

)
+

1
4 − n2

r2 cos2 θ
+

2γ

r
.

(3.11)

Hence the Hamiltonian

H(1) = −1

2
∇2 − γ

r
+

n2 − 1
4

2r2 cos2 θ
, n = 0,±1,±2, . . . (3.12)

is related to so(5) in the sense that the following relation holds:

H(1) = − γ 2

2(C ′ + 9/4)

∣∣∣∣
H(1)

. (3.13)

Due to the extra integral of motion

L̃2 = L2 +
n2 − 1

4

cos2 θ
, (3.14)

where L2 is the square of angular momentum,

L2 = −
(

∂2

∂θ2
+

cos θ

sin θ

∂

∂θ
+

1

sin2 θ

∂2

∂ϕ2

)
,

the Hamiltonian (3.12) is separable in the spherical coordinate system. Moreover, it is not
difficult to see that L̃2 is related to C ′so(4)

L̃2 = C ′so(4)|H(1) , (3.15)

where C ′so(4) = (cos θ)1/2 ◦ Cso(4) ◦ (cos θ)−1/2 and Cso(4) is given by (3.5). The second
integral of motion is, of course, Lz = i(∂/∂ϕ) (due to azimuthal symmetry).

The bound-state energy spectrum can now be obtained easily if we note that the eigenvalue
of C is j (j + 3), where j takes on integer values from zero up. Thus we find

E(1) = − γ 2

2(j + 3/2)2
, j = 0, 1, 2, . . . . (3.16)

Finally, we give for reference the expression for the bound-state wave functions

ψ(x) = Rj l(r)Y (1)
lmn(θ, ϕ), (3.17)
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where Rj l(r) is the radial part of the wave functions while Y (1)
lmn(θ, ϕ) is the angular part of it

Rj l(r) = κ e− u
2 ul+1/2L2l+2

j−l (u), u = 2γ r/(j + 3/2) (3.18)

Y (1)
lmn(θ, ϕ) = χ(1) sinm θ cosn+ 1

2 θP(m,n)
k (cos 2θ) exp(−imϕ), (3.19)

with 2k = l − m − n. Here Lα
n(x) and P(α,β)

n (t) are Laguerre and Jacobi polynomials [12],
respectively. The normalization constants κ and χ(1) are given by

κ =
[

4γ 3�(j − l + 1)

�(j + l + 3)

] 1
2

(3.20)

χ(1) =
[
(m + n + k)!k!(2k + m + n + 1)

π(m + k)!(n + k)!

] 1
2

. (3.21)

Observe that the angle function Y (1)
lmn(θ, ϕ) depend on the details of the dynamics. This is

a result of very general properties, shared by all non-central Hamiltonians. It is also worth
noting that the functions Y (1)

lmn(θ, ϕ) are related to matrix elements of class 1 representations
of so(4) in the bases corresponding to the so(4) ⊃ so(2) × so(2) reduction [13].

4. The so(5) ⊃ so(4) ⊃ so(3) ⊃ so(2) reduction

Now, the reduction conditions are

Cso(4))|lsn〉 = l(l + 2)|lsn〉 (4.1)

Cso(3)|lsn〉 = s(s + 1)|lsn〉 (4.2)

L12|lsn〉 = n|lsn〉, (4.3)

where

Cso(4) = 1

2

4∑
i,j=1

L2
ij , Cso(3) = 1

2

3∑
i,j=1

L2
ij . (4.4)

The parametrization that we see for x1, x2, x3, x4 must be such as to make Cso(4), Cso(3) and
L12 particularly simple,

x1 = r sin θ sin ϕ sin β x2 = r sin θ sin ϕ cos β

x3 = r sin θ cos ϕ x4 = r cos θ

with 0 � θ, ϕ < π, 0 � β < 2π and d4x = r3 sin2 θ sin ϕ dr dθ dϕ dβ. Then

Cso(4) = −
(

1

sin2 θ

∂

∂θ
sin2 θ

∂

∂θ
+

1

sin2 θ sin ϕ

∂

∂ϕ
sin ϕ

∂

∂ϕ
+

1

sin2 θ sin2 ϕ

∂2

∂β2

)
Cso(3) = −

(
1

sin ϕ

∂

∂ϕ
sin ϕ

∂

∂ϕ
+

1

sin2 ϕ

∂2

∂β2

)
L12 = i

∂

∂β

while

γ 2

(C + 9/4)
= 1

r3

∂

∂r
r3 ∂

∂r
+

1

r2

(
1

sin2 θ

∂

∂θ
sin2 θ

∂

∂θ
+

1

sin2 θ sin ϕ

∂

∂ϕ
sin ϕ

∂

∂ϕ

+
1

sin2 θ sin2 ϕ

∂2

∂β2

)
+

2γ

r
. (4.5)
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The unitary mapping

W : 	 → 	′ = (r sin θ sin ϕ)1/2	 (4.6)

brings equation (4.5) to the form

γ 2

(C ′ + 9/4)
= ∂2

∂r2
+

2

r

∂

∂r
+

1

r2

(
∂2

∂θ2
+

cos θ

sin θ

∂

∂θ
+

1

sin2 θ

∂2

∂ϕ2

)
+

1

r2 sin2 θ sin2 ϕ

(
1

4
+

∂2

∂β2

)
+

2γ

r
, (4.7)

where C ′ = (r sin θ sin ϕ)1/2 ◦C ◦(r sin θ sin ϕ)−1/2. Hence, the restriction of C ′ to a subspace
H(2) spanned by |lsn〉, for given n yields

γ 2

(C ′ + 9/4)

∣∣∣∣
H(2)

= ∂2

∂r2
+

2

r

∂

∂r
+

1

r2

(
∂2

∂θ2
+

cos θ

sin θ

∂

∂θ
+

1

sin2 θ

∂2

∂ϕ2

)
+

1
4 − n2

r2 sin2 θ sin2 ϕ
+

2γ

r
. (4.8)

Hence the Hamiltonian

H(2) = −1

2
∇2 − γ

r
+

n2 − 1
4

2r2 sin2 θ sin2 ϕ
, n = 0,±1,±2, . . . (4.9)

is related to so(5) in the sense that the following relation holds:

H(2) = − γ 2

2(C ′ + 9/4)

∣∣∣∣
H(2)

. (4.10)

In this case, the operators

L̃2 = L2 +
n2 − 1

4

sin2 θ sin2 ϕ
(4.11)

and

L̃2
z = L2

z +
n2 − 1

4

sin2 ϕ
− 1

4
(4.12)

are responsible for separability of H(2) in the spherical coordinate. Moreover, it is not difficult
to see that L̃2 and L̃2

z are related to C ′so(4) and C ′so(3) in the sense that

L̃2 = C ′so(4)|H(2) , L̃2
z = C ′so(3)|H(2) , (4.13)

where

C ′so(4) = (sin θ sin ϕ)1/2 ◦ Cso(4) ◦ (sin θ sin ϕ)−1/2,

C ′so(3) = (sin ϕ)1/2 ◦ Cso(3) ◦ (sin ϕ)−1/2.

The energy eigenvalues E(2) and their corresponding eigenfunctions ψ(2) are given by

E(2) = − γ 2

2(j + 3/2)2
, j = 0, 1, 2, . . . (4.14)

and

ψ(2)(x) = Rj l(r)Y (2)
lsn(θ, ϕ), (4.15)

where Rj l(r) is given by (3.16), while the angle function Y (2)
lsn(θ, ϕ) is given by

Y (2)
lsn(θ, ϕ) = χ(2) sins+ 1

2 θ sinn+ 1
2 ϕC1+s

l−s (cos θ)C
1
2 +n

s−n (cos ϕ), (4.16)
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with the normalization constant

χ(2) =
[

22s+2n(l − s)!(s − n)!(s!)2�2
(

1
2 + n

)
(1 + l)(1 + 2s)

(l + s + 1)!(s + n)!

] 1
2

. (4.17)

Here Cλ
n(t) is the Gegenbauer polynomials [12]. The functions Y (2)

lsn(θ, ϕ) are related
to matrix elements of class 1 representations of so(4) in the bases corresponding to the
so(4) ⊃ so(3) ⊃ so(2) reduction [13].

5. Concluding remarks

In this paper, we have investigated the nonrelativistic bound-state problem with non-central
potentials using the algebraic approach. It must be noted that the potentials under consideration
belong to the class of potentials admitting the separation of variables in several coordinate
systems [14]. The bound-state and scattering problems for these potentials have been
investigated by the path integral method in [15] and [16], respectively. Our main contribution
to the solution of the problem is twofold. The first is the introduction of the potential algebra
so(5) which, to the best of our knowledge, has never been treated before. The second is
the interrelation between extra integrals of motion responsible for separability and invariants
of subalgebras of so(5). Although in this paper we consider only the bound-state problem,
the scattering problem can be also solved within the framework of the potential algebra,
without explicit knowledge of the wave function. In this case, so(4, 1) plays the role of the
potential algebra. (For the approach and its implementation on some examples in one and
three dimensions one may consult the papers in [17].) This will be explicitly shown in a
forthcoming paper.
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